
TTUtility Component
Properties Methods Events Tasks Support Etc.

Unit
TU

Description
TTUtility is a Delphi component that implements the functionality in Borland's TUtility.DLL,
the same DLL that comes with Paradox for Windows. The primary purpose of this
component is to give the Delphi or Paradox developer an easy to implement tool for
validating and fixing corrupt Paradox tables from inside delivered applications.    The TUtility
DLL on which this component is based will work on Paradox tables up to and including level
5 tables.
Select a table to verify by assigning a value to the TableName property. Assigning a value
to TableName has two side effects.    TheTblInfo property is given value and the header of
the table is verified. The TblInfo structure contains all kinds of valuable information about
the table. Check TblInfo.bValidInfo and TblInfo.iRecords to get hints about the table header
integrity.
You can also assign values to the tErrTableName, tBkUpTableName, tKeyVTableName, and
tProbTableName properties. These are all tables that Verify and Rebuild generate as a side
effect of their execution.
Next you would assign a value to the AltStructName property. This is the name of a known
good table that rebuild can borrow the structure from. After assigning the AltStructName It
is also a good idea to check the AltTblInfo.bValidInfo to make sure the alternate table does
not have a corrupted header.
Assign a value to the Password property if the table has a master password.
Either drop the Verify Status Dialog and Rebuild Status Dialog Objects into your form or
define the onInfoVerify and onInfoRebuild events to respond to the status messages from
the verify and rebuild processes.
Finally, execute the ExecuteVerify public method. If errors are found, ExecuteVerify will
create an error table with the name specified in the tErrTableName property. Check the
iErrorLevel public property to the highest error level found in the error table. Use
iErrorLevel, and the information in the TblInfo property to determine whether to use the
Table's own structure or to borrow the structure from a similar table. To use the tables own
structure run ExecuteRebuild passing it the value of the pCurrentTblDesc Property . To
rebuild the table by borrowing a structure from a different table pass ExecuteRebuild the
value in the pAltTblDesc Property .
You can even execute both the verify and rebuild in one step using the
ExecuteVerifyRebuild Method .
See Also TUtility API ,    Strategies for corrupt file recovery and TIdxUtl

Properties
    Run-time only

    Key properties
       

iErrorLevel        
Options

       
TblInfo Pack
AltTblInfo        
Password

       
pCurrentTblDesc       
TableName

       
pAltTblDesc Tag
AtStructAlways tBkUpTableName

        AltStructName        
tErrTableName
AlwaysRebuild tKeyVTableName

        CBActive tProbTableName
CBRebuildDialog Table
CBVerifyDialog
Name

Methods
        ExecuteVerify

        ExecuteRebuild
        ExecuteVerifyRebuild

Events
    Run-time only

    Key properties
        OnInfoRebuild

        OnInfoVerify
        OnInfoVerReb

Using TTUtility Component

Here are 3 rules and one consideration you should be aware of when designing an
application that incorporates the TTUtility component.
RULES
1. Any table that will be verified or rebuilt using the TUtility component must be set to
inactive (Active = False) at design time if you want to run the application under Delphi. For
a discussion on the reasons see the TUtility API section later in this doc. If the table is
active you will receive a run time error.
2. We highly recommend that you never run ExecuteRebuild on a table without first running
ExecuteVerify. ExecuteVerify discovers things about the table that ExecuteRebuild needs to
know for a safe rebuild of the corrupt table.
3. If the table under consideration has a master password then it must be assigned
correctly to the Password property. The TUtility component has no way of knowing if this
password has been assigned incorrectly. In fact it will rebuild your table without the correct
password, however, the resulting table will have no records in it. THIS DOES NOT RAISE AN
ERROR. So... Make sure to assign the password correctly.
CONSIDERATION

Your application should deal with the side effect tables created by the Verify and Rebuild
processes. These include the Error Table created by ExecuteVerify and the Problems and
Key Violation Tables created by ExecuteRebuild. At some point the tables should be deleted
(especially the Error Table). The first demo project automatically deletes the Error Table
when it's done with it.

See Also Strategies for corrupt file recovery

iErrorLevel Property
Example
Applies To - TTUtility Component    Readonly and run time only.
Declaration
property iErrorLevel : Word;

Description
The iErrorLevel property contains the status of the table being worked on. This property
gets set whenever the TableName or AltStructName properties are assigned. This property
is also set when the ExecuteVerify procedure is run. Use the value in iErrorLevel to make
decisions on how best to proceed through the verify/rebuild process. This property along
with the bValidInfo field in the TblInfo (or AltTblInfo) structures are keys to successful table
maintenance.

Then possible values are;
0 : No structure problems. Everything's OK.
1 : Table is damaged but verification can continue.
2 : Table is damaged and verification stops.
3 : Table must be rebuilt manually with a user supplied table description.
4 : Table cannot be rebuilt. Use your last backup.

Note that the Table Repair utility in Paradox for Windows will allow for an auto-rebuild
(structure is not specified by
the user) on Level 2 errors. Experience shows that this is often a bad idea. The problem is
that since the verify aborts
with a level 2 before completion, there is no way to tell if there is a level 3 or 4 error
beyond the point where verify
aborts. We suggest that the user always specifies an alternate file structure on level 2
errors, especially if the bValidInfo
field is false.    (See the descriptions for TblInfo and AltTblInfo.).

TblInfo Property

Applies To - TTUtility Component    Readonly and run time only.
Declaration
property TblInfo: TTableInfo; (ReadOnly)

Description
The TblInfo record contains useful information on the structure of the table being verified
and/or rebuilt. TblInfo is filled with data whenever the TableName property is assigned.
Here is a brief description of the fields that make up the TTableInfo Structure.

sTableType :
String[32]
;

Driver type - Should always be "Paradox"

iFields                : Word; Number of fields in Table
iRecSize              : Word; Record size in bytes
iKeySize              : Word; Key size (Primary key)
iIndexes                : Word; Number of indexes on the table
iValChecks      : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords      : Word; Number of Aux passwords on the table
bProtected        : Bool; True if the table is protected by a password
sLangDriver      :

String[32]
;

Language driver name

iBlockSize        : Word; Physical file blocksize in K
iRecords              : Longint; Number of records in table
bValidInfo            : Bool; Is the header information reliable.

The last to fields in this data structure need special mention. The bValidInfo field specifies
whether TTUtility was able to read the header information reliably. If this value is False then
the chances are good that the header is corrupt. The safest thing to do in this case is to
borrow the table description from another good table rather than use the corrupt tables
description

AltTblInfo Property
Applies To - TTUtility Component    Readonly and run time only.
Declaration
property AltTblInfo: TTableInfo;

Description
The AltTblInfo record contains useful information on the structure of the table being used to
borrow a table description from. AltTblInfo is filled with data whenever the AltStructName
property is assigned. The value of AltTblInfo.bValidInfo should be checked after assigning
AltStructName. If the value is False do not use the AltStructName table to specify the
structure used for the rebuild. Here is a brief description of the fields that make up the
TTableInfo Structure.

sTableType :
String[32]
;

Driver type - Should always be "Paradox"

iFields                : Word; Number of fields in Table
iRecSize              : Word; Record size in bytes
iKeySize              : Word; Key size (Primary key)
iIndexes                : Word; Number of indexes on the table
iValChecks      : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords      : Word; Number of Aux passwords on the table
bProtected        : Bool; True if the table is protected by a password
sLangDriver      :

String[32]
;

Language driver name

iBlockSize        : Word; Physical file blocksize in K
iRecords              : Longint; Number of records in table
bValidInfo            : Bool; Is the header information reliable.

The last to fields in this data structure need special mention. The bValidInfo field specifies
whether TTUtility was able to read the header information reliably. If this value is False then
the chances are good that the header is corrupt and this table should probably not be used
as a source for a table structure.

pCurrentTblDesc Property
Example
Applies To - TTUtility Component    Readonly and run time only.
Declaration
property pCurrentTblDesc: pCRTblDesc
Description
Pass this value to ExecuteRebuild if you want to use the table specified in TableName to
determine the structure of the rebuilt table. You can assign this value with the pointer to a
CRTblDesc that you created yourself (Not Recommended). See the discussions in
ExecuteRebuild for more information.
ALSO NOTE - The user should not destroy or modify the Table Desc structure that is
passed back by pCurrentTblDesc it is to be looked at and passed to Rebuild table only.
ADVANCED NOTE - If you create and populate a pCRTblDesc structure yourself (not
recommended) and assign it to TUtility's pCurrentTblDesc property it then becomes owned
by the TUtility component. This means that you must not destroy it yourself. Any existing
pCurrentTblDesc structure is destroyed (the memory is freed) when ever a new value is
assigned or when the component itself is destroyed. If you destroy it yourself you run a
good chance of GPFing your app.
ADVANCED    The following describes the pCRTblDesc (Create Table Description) for
rebuilding a table. This structure is also documented in the Borland Database Engine User's
Guide. The CRTblDesc structure defines the general attributes of the table and supplies
pointers to arrays of field, index, and other descriptors.
Field Type Description
szTblName DBITBLNAME Table name, including path.
szTblType DBINAME Driver type.
szErrTblName DBIPATH Name of the Error table created by Execute Verify (including path)
szUserName DBINAME Not currently used.
szPassword DBINAME Master password (if bProtected is TRUE).
bProtected BOOL TRUE if table is encrypted.
bPack BOOL If TRUE, specifies packing for the rebuild. Assigned by the Pack property.
iFldCount UINT16 The number of field descriptors supplied.
pecrFldOp pCROpType Not used by rebuild. Must be zero.
pfldDesc pFLDDesc An array of field descriptors.
iIdxCount UINT16 The number of index descriptors supplied.
pecrIdxOp pCROpType Not used by rebuild. Must be zero.
pidxDesc pIDXDesc An array of index descriptors.
iSecRecCount UINT16 The number of security descriptors given.
pecrSecOp pCROpType Not used by rebuild. Must be zero.
psecDesc pSECDesc An array of security descriptors
iValChkCount UINT16 The number of validity checks
pecrValChkOp pCROpType Not used by rebuild. Must be zero.
pvchkDesc pVCHKDesc An array of validity check descriptors.
iRintCount UINT16 The number of referential integrity specifications.
pecrRintOp pCROpType Not used by rebuild. Must be zero.
printDesc pRINTDesc An array of referential integrity specifications.
iOptParams UINT16 The number of optional parameters.
pfldOptParam
s

pFLDDesc An array of field descriptors for optional parameters.

pOptData pBYTE The values of optional parameters.
In order to populate this structure correctly you must also create pointers to the pfldDesc,

pIDXDesc, pSECDesc, pVCHKDesc and pRINTDesc. For information on these record
structures refer to the DbiTypes.Int file in you Delphi\Doc directory or to the BDE User's
guide if you have it.
Also, be advised, that the last three fields of the structure mentioned above (iOptParams,
pfldOptParams, pOptData) must contain information specific to the Paradox table that is to
be rebuilt. The required information is not documented anywhere outside of Borland. We
suggest that if you really must create and populate this structure yourself that you first
populate it a few times by borrowing the structure from a known table and then study the
data in the borrowed structure.
The authors of this component can not support technical questions relating the to manual
populating of this structure.

pAltTblDesc Property
Example
Applies To - TTUtility Component    Readonly and run time only.
Declaration
property pAltTblDesc: pCRTblDesc
Description
Pass this value to ExecuteRebuild if you want to use the table specified in AltStructName to
determine the structure of the rebuilt table.    The description returned in the pAltTblDesc
represents the complete description of the table named in the AltStructName property.
This value is readonly. It exists only as a convenient way to specify a table to borrow a
structure from for the rebuild process.
NOTE - The user should not destroy or modify the Table Desc structure that is passed back
by pAltTblDesc it is to be looked at and passed to Rebuild table only. See pCurrentTblDesc
for a description of the pCRTblDesc structure.

AtStructAlways Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property AltStructAlways: Boolean
Description
Set this value to true if you always want the table specified in AltStructName to determine
the structure of therebuilt table. This is used only by ExecuteVerifyRebuild.

AltStructName Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property AltStructName:    TFileName
Description
Assign this property the name of the table to use as the structure for the rebuild. This
should be a completelyqualified file name including the path. Assigning a value to
AltStructName has two side effects. The AltTblInfo property is given value and the header
of the AltStructName table is verified. The values of in iErrorLevel and AltTblInfo.bValidInfo
should be checked after assigning a value to AltStructName.

AlwaysRebuild Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property AlwaysRebuild: Boolean
Description
Used by ExecuteVerifyRebuild. If this property is true then the table mentioned in the
TableName property is always rebuilt even when verify shows that it has no errors.

CBActive Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property CBActive : Boolean
Description
Set this value to False if you don't want the installed Callback functions activated. You
make completely define the callbacks using CBVerifyDialog and CBRebuildDialog or
OnInfoVerify and OnInfoRebuild and then choose to not use them at run time by setting this
value to false. You would do this for performance reasons.
Testing has shown that turning the information callbacks on has an adverse effect on
performance. The CBActive can be turned on or off at runtime. This is especially useful for
creating programs that do multiple verifies and rebuilds and where there will be no one
around to watch the gauges move anyway.
NOTE : Do not try to change CBActive from True to False from inside any of the onInfoXXXX
events. CBActive must be set prior to ExecuteVerify,    ExecuteRebuild or
ExecuteVerifyRebuild.

CBRebuildDialog Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property CBRebuildDialog: TRebuildDlg
Description
Assign this the value of the TRebuildDlg component on your form. This is the easiest way to
get status information during ExecuteRebuild. If you do not want to use the canned
TRebuildDlg component you may define your own status dialog by implementing the
OnInfoRebuild Event

CBVerifyDialog Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property CBVerifyDialog: TVerifyDlg
Description
Assign this the value of the TVerifyDlg component on your form. This is the easiest way to
get status information during ExecuteVerify.
If you do not want to use the canned TVerifyDlg component you may define your own
status dialog by implementing the OnInfoVerify Event .

Options Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property Options: TVerifyOptions
Description
This property specifies various behaviors of ExecuteVerify. The default is all options are
false. Here are the available options:

TU_Append_Error
s

Append errors to an existing error table

TU_No_Secondar
y

Bypass secondary indexes

TU_No_Warnings Prevent warnings of secondary errors
TU_Header_Only Verify table header only
TU_Dialog_Hide Reserved for future expansion. Do not use
TU_No_Lock Do not lock table being verified
If you are going to create an application that verifies a number of files in a batch, then you
will want to set the TU_Append_Errors to TRUE unless you specify a different error table for
each table in your batch.

Pack Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property Pack :    Boolean
Description
The way this property is supposed to work is that if the Pack property equals TRUE then
ExecuteRebuild packs the rebuilt table. If Pack is set to FALSE the records are not packed.
This is part of the TUtility API and is exposed in the component for completeness. However,
it is not supported by the current version of the TUtility.DLL. The records are always
packed.

Password Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property Password :    String
Description
Assign the master password of the table to this property. If the table is password protected
then this property MUST be correctly assigned, otherwise, when ExecuteRebuild is run, the
table will appear to be rebuilt but the resulting table will have no records in it. See the
discussion later in this document under the TUtility API section for more information about
passwords.
Passwords and the TUtility API are rather tricky. Since the TUtility does not use a standard
BDE session it has no knowledge of what passwords are available. For this reason you must
specify the table's master password in order for the ExecuteRebuild procedure to work
correctly.
Warning, and very important,    there is no way to check if the password entered is valid. If
a table has a password assigned to it, ExecuteRebuild will run with no errors even if the
wrong password (or no password) is entered. When this happens the resulting rebuild table
will have no records. Note that this is even true in the Rebuild performed by Paradox for
Windows. PFW will ask for a master password but if you key in an incorrect one there is no
error message. The table is rebuild and the record count is zero.
The TUtility component offers some ways to insure that the correct password is entered.
Here's the strategy. When the TableName property is assigned, as a side effect,    it checks
to see if a password is required for the table. If a password is required it checks TUtility's
password property to see if it has been assigned. If no password as been assigned a
message box asks the user to assign the password. Now with the password in hand, TUtility
attempts to get an extended description of the table without opening a cursor on the table.
If this is successful then TUtility's TblInfo record property will show a positive value in the
iRecords field. It's a good bet that if iRecords is zero than the password is incorrect but it's
still no guarantee since a corrupt table header can also return an iRecords count of zero
even when the password is correct.
Of course you could always try to open the table but if the table is corrupt then this may
not be possible. Remember that the TUtility component never opens a cursor on the table
being worked on.
So the bottom line is, make sure the value assigned to the password property is correct.

Table Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property Table :    TTable
Description
This property was added as an optional way of specifying the TableName . You can drop a
TTable component into your form and then use this property to select that TTable
component. Assigning this component automatically assigns a value to the TableName
property. This may be easier than assigning the TableName property directly if the path
name is very long.
Note that this property is completely optional and is ment only as a way of assisting in the
assigning of the TableName property. Also not that using this method to assign Tablename
uses slightly more resources than assigning TableName directly,

TableName Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property TableName : TFileName
Description
Assign this property the name of the table to be verified and/or rebuilt. This should be a
completely qualified file name, including the path. Assigning a value to TableName has two
side effects.    The TblInfo property is given a value and the header of the table is verified.
The values in iErrorLevel and TblInfo.bValidInfo should be checked after assigning a value
to TableName.
Assigning a value to the Table property will automatically assign a value to the TableName
property. Also assigning a value to TableName directly will clear the Table property.

tBkUpTableName Property
Applies To - TTUtility Component Read write, and both design and    time only.
Declaration
property tBkUpTableName: TFileName
Description
Assign this property the name of the backup table created by ExecuteRebuild. The default
is TableName + '_'. For example, if the TableName was CUSTOMER.DB then the backup
name would be CUSTOME_.DB If no path name is specified then the table will be created in
the same directory as TableName .

tErrTableName Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property tErrTableName : TFileName
Description
Assign this property the name of the Error Table to be created by ExecuteVerify. The default
is __TUERR.DB. If no path name is specified, the table will be created in whatever directory
Delphi believes is your Private Directory (Session.PrivDirectory).

tKeyVTableName Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property tKeyVTableName: TFileName
Description
Assign this property the name of the key violation table created by ExecuteRebuild. The
default is KEYVIOL.DB. If no path name is specified, the table will be created in whatever
directory Delphi believes is your Private Directory (Session.PrivDirectory).

tProbTableName Property
Applies To - TTUtility Component    Read write, and both design and    time only.
Declaration
property tProbTableName: TFileName
Description
Assign this property the name of the problems table created by ExecuteRebuild. The
default is PROBLEMS.DB. If no path name is specified, the table will be created in whatever
directory Delphi believes is your Private Directory (Session.PrivDirectory).

ExecuteVerify Method
Example
Applies To - TTUtility Component
Declaration
procedure ExecuteVerify
Description
ExecuteVerify performs the verify step. At a minimum the TableName property must be set
for this procedure to operate. Depending on how options are set, ExecuteVerify creates or
appends to    the table specified by the tErrTableName property. You can view this table for
an in-depth analysis of the table's problems. On completion ExecuteVerify sets iErrorLevel
to the highest error encountered. Use iErrorLevel and the value in TblInfo.bValidInfo to
determine the best way to run ExecuteRebuild.

The structure of the error table created by ExecuteVerify looks like this.

Field Name Typ
e

Size Description

Drive A 2 Disk Drive
Directory A 65 Path to the Table
Table Name A 8 Paradox Table Name
Extension A 4 Should always be .DB
Error Code S Code used to get the Error Message (Appendix C)
Error Level S Rating of error severity
Error
Message

A 150 Textual description of error

Date D The table's file date
Time T The table's file time
The Error Level is the most important field since it rates the importance of the error. See
the description of the iErrorLevel property. ExecuteVerify reports the highest value found in
the Error Level field in the iErrorLevel property.

ExecuteRebuild Method
Example
Applies To - TTUtility Component
Declaration
Procedure ExecuteRebuild(pTableDesc : pCRTblDesc)
Description
ExecuteRebuild attempts to fix the table. It creates a backup of the original table in the
table specified by the tBkUpTableName property. A problem table,tProbTableName, and key
violation table tKeyVTableName may also be created.
ExecuteRebuild's minimum requirement is that the TableName property be specified and
that a value be passed in the method's pTableDesc parameter.
The pTableDesc parameter specifies a complete description of the table to be rebuilt. This
table description can be created in any of three ways;
1. Use the value in the pCurrentTblDesc property which is the description of the table
named in the TableName property.
2. Use the value in the pAltTblDesc property which is the description of the table named in
the AltStructName property. (This is borrowing the structure from another table).
3. (NOT RECOMMENDED) The user can create the table description itself.. If this is what
you want to do you must study and completely understand the CRTTblDesc. This is by far
the most complicated record structure we have ever encountered and we highly
recommend that you avoid attempting the creation of this structure from scratch.
Note, that once you pass this pointer to ExecuteRebuild it becomes "owned" by the
TTUtility object. Do not attempt to destroy it yourself, TTUtility will take care of the
destruction of this structure.
Recommendation - For the safest, most successful rebuilds we recommend that you pass
pCurrentTblDesc as the parameter to ExecuteRebuild only when the iErrorLevel is 2 or less
(see iErrorLevel above) and when TblInfo.bValidInfo is True. Otherwise, specify a table to
borrow the structure from in AltStructName and use pAltTblDesc as the parameter for
ExecuteRebuild.

ExecuteVerifyRebuild Method
Example
Applies To - TTUtility Component
Declaration
procedure ExecuteVerifyRebuild
Description
ExecuteVerifyRebuild combines the verify and rebuild processes into a single convenient
procedure call. First, the table mentioned in the TableName property is verified. If the
header is not damaged (TblInfo.bValidInfo = True) and the error level is less than 3 then the
table's own structure is used for the rebuild, otherwise the table named in the
AltStructName property is used. If AltStructAlways is true than the table named in the
AltStructName property is always used to get the rebuild structure. The AltStructName
property should always be assigned prior to executing this procedure.
If the AlwaysRebuild property is set to true then the table will always be rebuilt even it
verify returns an iErrorLevel of zero. If AlwaysRebuild is false (the default) then the table is
not rebuilt if the verify showed no table errors. Note, it has been reported that the the
verify portion of the TUtility.Dll can show no    when there are errors that rebuild
can fix.    We can not prove or disprove this claim. Also Verify will not report out of date
secondary indexes. Use the TIdxUtl component to check and regenerate secondary
indexes.
Use the companion OnInfoVerReb event plus onInfoVerify and onInfoRebuild to monitor and
record the execution of this procedure.

OnInfoRebuild Event
Example
Applies To - TTUtility Component
Declaration
event OnInfoRebuild: TInfoRebuildEvent
Description
Define the OnInfoRebuild event if you want to create your own Rebuild Status Dialog box.
The TInfoRebuildEvent looks like this.

TInfoRebuildEvent = procedure(
Sender: Tobject; {Where the message came from}
RebuildCBRec: TRebuildCBData) { Message to display }
of object;

Where TRebuildCBData is
 TRebuildCBData = record
 iPercentDone : Integer; { Percentage done. }
 sMsg : String[128]; { Message to display }
 end;
If sMsg is blank then use the information in iPercentDone other us the information in sMsg.
NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD. This
event is actually part of a BDE Callback response. The rules for Callback responses are clear. The BDE
is not re-entrant, that means that you can not do anything here that would call the BDE. So.... No
database calls. Just make pictures.

OnInfoVerify Event
Example
Applies To - TTUtility Component
Declaration
event OnInfoVerify: TInfoVerifyEvent
Description
Define the OnInfoVerify event if you want to create your own Verify Status Dialog box. The
TInfoVerifyEvent looks like this.
 TInfoVerifyEvent = procedure(

Sender: Tobject; {Where the message came from}
VerifyCBRec: TVerifyCBData {The data to be acted on}
) of object;

Where TVerifyCBData is
 TVerifyCBData = record
 PercentDone: word; The Percent Completed
 TableName: String[82]; Passed only with Process =
TUVerifyTableName
 Process: TUVerifyProcess; Changes with the various verify steps
below.
 CurrentIndex: word; Increments with each secondary index
checked.
 TotalIndex: word; Number of Secondary Indexes
 end;
and The TUVerifyProcess is
 TUVerifyProcess = (

TUVerifyHeader, Header is verified, PercentDone increments.
TUVerifyIndex, Primary Index is verified, PercentDone

increments.
TUVerifyData, Primary Index Data is verified, PercentDone

increments.
TUVerifySXHeader, A Secondary Index Header verified, PercentDone

incs.
TUVerifySXIndex, A Secondary Index verified, PercentDone

increments.
TUVerifySXData, A Secondary Index data verified, PercentDone

incs.
TUVerifySXIntegrity, A Secondary Index integrity is verified. Ditto.
TUVerifyTableName Passes the Table Name in TVerifyCBData.TableName
);

You need to watch the process field to determine which gauge to adjust with the amount
delivered in PercentDone.
NOTE : This is VERY important. DO NOT MAKE ANY DATABASE CALLS FROM THIS METHOD.
This event is actually part of a BDE Callback response. The rules for Callback responses are
clear. The BDE is not re-entrant, that means that you can not do anything here that would
call the BDE. So.... No database calls. Just make pictures.

OnInfoVerReb Event
Example
Applies To - TTUtility Component
Declaration
event OnInfoVerReb: TInfoVerRebEvent;
Description
OninfoVerReb sends textual messages back to your application as ExecuteVerifyRebuild
runs. These messages are in addition to those sent by onInfoVerify and onInfoRebuild. The
text messages sent by ExecuteVerifyRebuild and received in onInfoVerReb are general in
nature and allow you to monitor the VerifiyRebuild sequence. The TInfoVerRebEvent looks
like this:

TInfoVerRebEvent = procedure(
 Sender: TObject;
 AMessage : String;
 Process : TUVerRebProcess;
 var Abort : Boolean) of object;

Where the Process field is
TUVerRebProcess = (TUVerifying, TURebuilding);
As ExecuteVerifyRebuild runs it sends general status information back to the application by
firing onInfoVerReb. The status information arrives in the AMessage field. This information
can be written to the screen or printer for later review.
The Process field indicates which process is running (verify or rebuild). You can abort
onInfoVerReb by setting Abort to true.

Example
Use iErrorlevel,    pCurrentTblDesc and pAltTblDesc to properly rebuild a table.

procedure TFormTUMain.ButtonRebuildClick(Sender: TObject);
begin

 TUtilityVerReb.AltStructName:= 'C:\Data\GoodInfo.DB';
 TUtility1.tBkUpTableName := 'C:\Data\BadInfo_.DB'
 TUtility1.tKeyVTableName := 'C:\Data\KyVInfo.DB'
 TUtility1.tProbTableName:= 'C:\Data\ProbInfo.DB'

 If (TUtility1.iErrorLevel < 3) then
 Tutility1.ExecuteRebuild(TUtility1.pCurrentTblDesc);
 else if (TUtility1.iErrorLevel < 4) then
 Tutility1.ExecuteRebuild(TUtility1.pAltTblDesc);
 else
 begin
 MessageDlg('BAD NEWS! The cannot be rebuilt.' + #10#13 +
 'Reload from backups.', mtInformation, [mbOK], 0);
 exit; {Can't rebuild so Bail out }
 end;
 MessageDlg('Table Successfully rebuild!', mtInformation, [mbOK], 0);
end;

Example
procedure TFormTUMain.ButtonVerifyClick(Sender: TObject);
begin

 TUtility1.TableName := 'C:\Data\BadInfo.DB';
 TUtility1.tErrTableName := 'C:\Data\ErrInfo.DB'
 TUtility1.ExecuteVerify;
 if TUtility1.ierrorLevel <> 0 then
 begin
 MessageDlg('The table is corrupt and must be repaired!,
 mtWarning, [mbYes, mbNo], 0) = mrYes then
 end
 else
 begin
 MessageDlg('GOOD NEWS!' + #10#13 + 'Header and Data are O.K.',
 mtInformation, [mbOK], 0);
 end;
end;

Example
procedure TFormBatchMain.ButtonFixAllClick(Sender: TObject);
begin
 TUtilityVerReb.TableName := 'C:\Data\BadInfo.DB';
 TUtilityVerReb.AltStructName:= 'C:\Data\GoodInfo.DB';
 TUtilityVerReb.tBkUpTableName := 'C:\Data\BadInfo_.DB'
 TUtilityVerReb.tErrTableName := 'C:\Data\ErrInfo.DB'
 TUtilityVerReb.tKeyVTableName := 'C:\Data\KyVInfo.DB'
 TUtilityVerReb.tProbTableName:= 'C:\Data\ProbInfo.DB'
 Try
 TUtilityVerReb.ExecuteVerifyRebuild;
 except
 {report the error to the log so it doesn't stop the process}
 on E:Exception do
 SendToLog(E.Message);
 end;
end;

Example
procedure TFormTUMain.TUtility1InfoRebuild(Sender: TObject;
 RebuildCBRec: TRebuildCBData);
begin
 with RebuildCBRec do
 begin
 if sMsg = '' then
 FormRebuildStatus.GaugeRebuild.Progress := iPercentDone
 else
 begin
 FormRebuildStatus.LabelNumPacked.Caption := sMsg;
 FormRebuildStatus.refresh;
 end;
 end;
end;

Example
procedure TFormTUMain.TUtility1InfoVerify(Sender: TObject;
 VerifyCBRec: TVerifyCBData);
begin
 with VerifyCBRec do
 begin
 Case Process of
 TUVerifyTableName : FormVerifyStatus.LabelStatus.Caption := TableName;
 TUVerifyHeader : FormVerifyStatus.GaugeHeader.Progress := PercentDone;
 TUVerifyIndex : FormVerifyStatus.GaugeIndex.Progress := PercentDone;
 TUVerifyData : FormVerifyStatus.GaugeData.Progress := PercentDone;
 TUVerifySXHeader : FormVerifyStatus.GaugeHeaderIdx.Progress :=
PercentDone;
 TUVerifySXIndex : FormVerifyStatus.GaugeIndexIdx.Progress :=
PercentDone;
 TUVerifySXData : FormVerifyStatus.GaugeDataIdx.Progress :=
PercentDone;
 TUVerifySXIntegrity :
 begin
 FormVerifyStatus.GaugeIntegrity.Progress := PercentDone;
 FormVerifyStatus.LabelZeroOf.Caption := IntToStr(CurrentIndex);
 FormVerifyStatus.LabelOfZero.Caption := IntToStr(TotalIndex);
 FormVerifyStatus.refresh;
 end;
 end; {Case}
 end;
end;

Example
procedure TFormBatchMain.TUtilityRestInfoVerReb(Sender: TObject;
 AMessage: String; Process: TUVerRebProcess; var Abort: Boolean);
begin
 SendToLog(AMessage);
 if process <> CurProcess then
 begin
 Case Process of
 TUVerifying :
 begin
 FormStatus.GroupBoxVerify.Font.Color := clRed;
 FormStatus.GroupBoxRebuild.Font.Color := clBlack;
 end;
 TURebuilding :
 begin
 FormStatus.GroupBoxVerify.Font.Color := clBlack;
 FormStatus.GroupBoxRebuild.Font.Color := clRed;
 end;
 end; {case}
 FormStatus.GroupBoxVerify.refresh;
 FormStatus.GroupBoxRebuild.refresh;
 CurProcess := Process;
 end;
end;

TU Unit
The TU unit contains the declarations for the TTUtility component, as well as, the
declarations for the associated fields. When you add a component declared in this unit to a
form, the unit is automatically added to the uses clause of that form's unit. The following
items are declared in the TU unit:

Components
TTUtility

Types

ETUtilityError
TVerifyOption
TVerifyCBData
TInfoVerifyEvent
TRebuildCBData
TInfoRebuildEvent
TInfoVerRebEvent
TTableInfo

To see a listing of items declared in this unit including their declarations, use the
ObjectBrower.

ETUtilityError Type
Unit
TU
Declaration
ETUtilityError = class(Exception)
Description
Specialized TUtility error class that knows about the errors and error messages supported
in the TUtility API.

TVerifyOption Type
Unit
TU
Declaration
    TVerifyOption = (
        vTU_Append_Errors,
        vTU_No_Secondary,   
        vTU_No_Warnings,     
        vTU_Header_Only,     
        vTU_Dialog_Hide,     
        vTU_No_Lock);           

also
    TVerifyOptions = Set of TVerifyOption;
Description
Type used bt the Tutility.Options property.

TU_Append_Error
s

Append errors to an existing error table

TU_No_Secondar
y

Bypass secondary indexes

TU_No_Warnings Prevents warnings of secondary errors
TU_Header_Only Verify table header only
TU_Dialog_Hide Reserved for future expansion. Do not use
TU_No_Lock Do not lock table being verified

TVerifyCBData Type
Unit
TU
Declaration
    TVerifyCBData = record
        PercentDone: word;
        TableName: String[82];
        Process: TUVerifyProcess;
        CurrentIndex: word;
        TotalIndex: word;
    end;
where
    TUVerifyProcess = (TUVerifyHeader, TUVerifyIndex, TUVerifyData, TUVerifySXHeader,
  TUVerifySXIndex, TUVerifySXData, TUVerifySXIntegrity,
  TUVerifyTableName);
Description
The TVerifyCBData record is one of the paramenters of the TInfoVerifyEvent which is the
type of the TTUtility.OnInfoVerify event.

PercentDone The Percent Completed
TableName Passed only with Process = TUVerifyTableName
Process Changes with the various verify steps below.
CurrentIndex Increments with each secondary index checked.
TotalIndex Number of Secondary Indexes
The Process field of TVerifyCBData is of type TUVerifyProcess its members are described as

TUVerifyHeader Header is verified, PercentDone increments.
TUVerifyIndex Primary Index is verified, PercentDone increments.
TUVerifyData Primary Index Data is verified, PercentDone increments.
TUVerifySXHeader A Secondary Index Header verified, PercentDone incs.
TUVerifySXIndex A Secondary Index verified, PercentDone increments.
TUVerifySXData A Secondary Index data verified, PercentDone incs.
TUVerifySXIntegrity A Secondary Index integrity is verified. Ditto.
TUVerifyTableName Passes the Table Name in TVerifyCBData.TableName

TInfoVerifyEvent Type
Unit
TU
Declaration
    TInfoVerifyEvent = procedure(
            Sender: TObject;                           
            VerifyCBRec: TVerifyCBData) of object;

Description
The OnInfoVerify event is defined as type TInfoVerifyEvent. The Sender field specifices the
object that fired the event. VerifyCBRec is of type TVerifyCBData and contains all the
information needed to created RAD status displays for the verify process.

TRebuildCBData Type
Unit
TU
Declaration
    TRebuildCBData = record
        iPercentDone        : Integer;     
        sMsg                        : String[128];   
    end;
Description
TRebuildCBData defines the type of the information record passed as one of the
parameters in in OnInfoRebuild event which is of type TInfoRebuildEvent.
PercentDone contains the percentage complete of the data move part of the rebuild
process while sMsg contains a verbal description of the pack part of the rebuild process.

TInfoRebuildEvent Type
Unit
TU
Declaration
    TInfoRebuildEvent = procedure(
            Sender: TObject;                   
            RebuildCBRec: TRebuildCBData) of object;
Description
The TInfoRebuildEvent type is used to define the OnInfoRebuild event. RebuildCBRec
contains the information needed to display RAD status dialogs.

TInfoVerRebEvent Type
Unit
TU
Declaration
    TInfoVerRebEvent = procedure(
            Sender: TObject;
            AMessage : String;
            Process : TUVerRebProcess;
            var Abort : Boolean) of object;
    where Process is defined as
        TUVerRebProcess = (TUVerifying, TURebuilding);
Description
TInfoVerRebEvent is the type of the ExecuteVerifyRebuild event.
As ExecuteVerifyRebuild runs it sends general status information back to the application by
firing onInfoVerReb. The status information arrives in the AMessage field. This information
can be written to the screen or printer for later review.
The Process field indicates which process is running (verify or rebuild). You can abort
onInfoVerReb by setting Abort to true.

TTableInfo Type
Unit
TU
Declaration
    TTableInfo = Record
        sTableType : String[32];     
        iFields                : Word;                   
        iRecSize                : Word;               
        iKeySize                : Word;               
        iIndexes                : Word;                 
        iValChecks            : Word;             
        iRefIntChecks      : Word;           
        iRestrVersion      : Word;             
        iPasswords            : Word;             
        bProtected            : Bool;                 
        sLangDriver          : String[32];
        iBlockSize            : Word;                 
        iRecords                : Longint;             
        bValidInfo            : Bool;                 
    end;
Description
TTableInfo is the type of TTUtilities TblInfo and AltTblInfo properties.

sTableType :
String[32]
;

Driver type - Should always be "Paradox"

iFields                : Word; Number of fields in Table
iRecSize              : Word; Record size in bytes
iKeySize              : Word; Key size (Primary key)
iIndexes                : Word; Number of indexes on the table
iValChecks      : Word; Number of val checks on the table
iRefIntChecks : Word; Number of Ref Integrity constraints on the table
iRestrVersion : Word; Restructure version number
iPasswords      : Word; Number of Aux passwords on the table
bProtected        : Bool; True if the table is protected by a password
sLangDriver      :

String[32]
;

Language driver name

iBlockSize        : Word; Physical file blocksize in K
iRecords              : Longint; Number of records in table
bValidInfo            : Bool; Was the header information reliable.

TUtility API
The TTUtility component implements the functionality of Borland's TUtility.DLL through the
function made public by the published TUtility API. If you would like a copy of the API then
download the TUTILITY.ZIP file found in the Borland Tools forum on CompuServe. The
following are some observations about the Tutility API that we made during the
development of this component.
BDE Sessions vs. TUtility Sessions
The TUtility API does not use the standard BDE session. In fact the API supports it's own
specialized session. This session has no knowledge of the things that are associated with a
typical BDE session, like aliases for example. This does not mean that you have no access
to BDE session information while working with the TTUtility component. You can still access
the global session variable as long as the DB unit is referenced in your uses clause. Just
bear in mind that TTUtility itself knows nothing about session. You do not need to worry
about the TUtility session since it has been completely encapsulated into the component.
The TUtility API also does all its table verification and rebuilding without ever opening a
BDE cursor on the table. This is a requirement for rebuild since if the table is corrupted no
cursor could be opened in any case.
Once again. The TUtility component never opens a cursor on the table being worked on.
Any verify/rebuild functionality that you build into your application must insure that the
table to be worked has its active property set to false and that this property remain false
while you use the TUtility's executeXXXX methods.
Passwords
Passwords and the TUtility API are rather tricky. Since the TUtility does not use a standard
BDE session it has no knowledge of what passwords are available. For this reason you must
specify the table's master password in order for the ExecuteRebuild procedure to work
correctly.
WARNING & VERY IMPORTANT,    there is no way to check if the password entered is
valid. If a table has a password assigned to it, ExecuteRebuild will run with no errors even if
the wrong password (or no password) is entered. When this happens the resulting rebuild
table will have no records. Note that this is even true in the Rebuild performed by Paradox
for Windows. PFW will ask for a master password but if you key in an incorrect one there is
no error message. The table is rebuilt and the record count is zero.
The TUtility component offers some ways to insure that the correct password is entered.
Here's the strategy. When the TableName property is assigned, as a side effect,    it checks
to see if a password is required for the table. If a password is required it checks TUtility's
password property to see if it has been assigned. If no password has been assigned a
message box asks the user to assign the password. Now with the password in hand, TUtility
attempts to get an extended description of the table without opening a cursor on the table.
If this is successful then TUtility's TableInfo record property will show a positive value in the
iRecords field. It's a good bet that if iRecords is zero then the password is incorrect but it's
still no guarantee since a corrupt table header can also return an iRecords count of zero
even when the password is correct.
Of course you could always try to open the table but if the table is corrupt then this may
not be possible. Remember that the TUtility component never opens a cursor on the table
being worked on.
So the bottom line is, make sure the value assigned to the password property is correct.
Active Tables at Design Time
Another side effect of the TUtilities independent session is that it does not recognize a

table being made inactive (Active := False) at run time. Note, this limitation only
applies when trying to run an application inside the Delphi environment.
In fact, the TUtility component sees Delphi design time as being a separate application that
has the table it wants to work on open. This is unfortunate because it means that you
must insure that no table that could possibly be run against executeVerify or
ExecuteRebuild be set to active at design time. For example, you cannot set a table to
active at design time and then set it to inactive at run time prior to running executeVerify.
The problem is that the TUtility API has no knowledge of the DBE session so it does not see
the table go inactive at run time. It still believes the table is open and you will get a "Table
Busy" error message. So.... you must insure that all tables in an application that use the
TUtility API must have there active property set to FALSE at design time.
This requirement is only true when you run your application under Delphi. The problem
does not exist when running the compiled executable application alone outside the Delphi
environment. Also there is no problem making a table active at run time. In fact, as long as
the table starts off as Active = FALSE, then active can be set to TRUE, have something
done to it, set back to FALSE and have executeVerify run against it!
The Rule is only that it must start off inactive if you want to test the verify/rebuild
functionality inside the Delphi environment.

Strategies for corrupt file recovery
Creating an Environment for the Painless recovery of Table Corruption
Over the years, TUtility, in its various forms, has probably created more forum and seminar
discussion than probably any other single aspect of the Paradox database system.
Certainly corruption and lost data tends to be a loud issue.
Data corruption does seem to just happen. Probably the biggest reason is desktops or
servers being turned off or rebooted while some table activity is going on. Often there is no
apparent reason and often the data corruption can go on for a long period of time before
anyone notices. The one thing that you can be sure of is that data corruption will
eventually happen.
Creating an environment that allows you to recover from data corruption quickly, easily
and with minimum loss of data is really very straight forward. Just follow three rules:
Rule #1 - Backup your files regularly and keep a number of iterations of the
backups.
While this rule is obvious it still needed to be said. Going to a non-corrupt backup is
sometimes the only way you have of recovering from a badly damaged table. If
ExecuteVerify reports a level 4 error in iErrorLevel then you are SOL unless you have a
recent (and good) backup.
Rule #2 - For every table in your database keep an empty clone of it stored in a
separate directory and on removable disk.
As mentioned earlier, the safest way to rebuild a table is to borrow the tables structure
from another identical table which is known to be good. The official word is that the
TUtility.DLL can rebuild a table using its own structure as long as the iErrorLevel is less than
3. While this is the official word there are a number of users out there who would disagree
based on experience. So, whenever possible rebuild tables using a borrowed structure from
a known good clone.
Note that "empty tables" is really not quite correct. The tables in your "borrow structure"
directory should actually have at least one dummy record in each. The reason for this is
that for some reason the table repair DLLs (TUTILITY.DLL and TUTIL32.DLL)    believe that an
empty table is a corrupt table.
Rule #3 - Verify all your tables on a regular basis.
The Paradox world is littered with stories of corrupt tables that turned out to also be corrupt
on the last backup, on the backup before that. In fact, we heard one story of a shop that
went back to its year end backup (9 months old) and discovered that the table in question
was corrupt even then. The solution is simple: verify all the tables in your database on a
regular basis.
Deciding How to Rebuild a Table
The decision on how to rebuild a table can be a little complicated. By far the simplest (and
safest) solution is to not make the decision at all and to always rebuild the table using an
alternate or borrowed table structure.
Having said that, here are the decision making rules if you want to make a decision.
Check the iErrorLevel property after ExecuteVerify is run. If iErrorLevel is less than 3 then
the table is a good candidate for a rebuild using its own structure. The possibly of a
successful rebuild goes down if the TblInfo.bValidInfo value is FALSE and/or the
TblInfo.iRecord shows a value of zero when you know the table has records in it. But even
then you might be OK.

What to do when you have a Level 4 Error and no table to borrow the structure from If this
happens then you are still probably OK it's just that you need to do a little more work. You
need to create a table using either Paradox or the Database Desktop. This table must be
exactly the same structure as the corrupt table. If you don't know the structure then you
are out of luck. Once you have created this table you can use it as the alternate structure
table and borrow its structure to rebuild the corrupt table.

Support Etc.

TTUtility was created by Out & About Productions. We provide support for this component
by e-mail, FAX., and snail mail.
e-mail : Compuserve 75664,1224

: Internet 75664.1224@compuserve.com
FAX : 619.259.0210
snail mail : Out & About Production

: 8526 Lepus Road
: San Diego, CA 92126

Disclaimers and Legal Stuff.
We really hate disclaimers but in the case of this component we feel it is absolutely
necessary. The TUtility API and this component on which it is based are very powerful and
can make your file maintenance tasks much easier. However, along with this power comes
great potential for disaster.
We have studied the TUtility API in depth and have learned about a number of its quirks. All
that we have discovered is documented here. We realize that the documentation is
lengthy, but we highly recommend that you read it from front to back. If you follow the
guidelines documented here you should be able to easily and successfully build
applications that incorporate verify and rebuild functionality. We have tested the
component both in house and in beta test, but this
testing is still a far cry from understanding all the different things that can happen to a file
in the real world. So... here's the disclaimer.
Use of this product is at your own risk. Neither Out & About Productions or Borland
International is responsible for any damage to your data as a result of using this
component (TTUtility) or the underling TUtility.DLL
The TUtility.DLL is a unsupported product from Borland International. Borland International
has made the TUtility.DLL (included with this product) freely redistributable with an
application developed with the Borland Database Engine.
Along with the TUtility.DLL you may distribute any application that includes the TTUtility
component and supporting components with no additional royalties beyond your initial
license registration fee.
If you use the TTUtility component to develop an application where you also deliver the
application's source then this is considered an additional license and the receiving party
must license a copy of TTUtility from Out & About Production.
The TUtility.DLL and its API are NOT official Borland products, and as such Borland does not
support the published API.
You have the right to use this technical information subject to the terms of the no-nonsense
License Statement that you received with Delphi. Out & About products are licensed with
exactly the same rules as documented in Borland's no-nonsense License Statement.
If you would like additional information on Borland's TUtility API you should download the
file TUTILITY.ZIP from the Borland Tools forum on CompuServe.
The TTUtility component is copyright Ó1995 by Out & About Productions and is protected
by international law. We reserve all rights.
The TTUtility components, help files and documentation are copyright Ó1995 by

Out & About Productions and is protected by international law. We reserve all
rights.

TIdxUtl Component
Properties Methods Events Support Etc.
The TIdxUtl component was added to the TUtility component set to give the Delphi
application developer a simple way to validate and update Paradox table indexes. With
TIdxUtl you can check to see if the indexes on a Paradox table are up to date and then if
they are out of date the component can regenerate the index(es). This component was
added for completeness of the component set. The TUtility.Dll does not check for out of
date indexes so this component was added to fill the gap.
To use TdxUtl to check and regen a tables index you need to assign a table to the
TableName property and assign the Password property if the table has a master password.
Then run CheckIndexes to determine if the indexes are up to date. If indexes are found to
be out of date run RegenIndex to regenerate the indexes. You can use the onInfoIdxCheck
and onInfoIdxRegen events to monitor the progress.
This component is especially useful in situations where file servers or work stations are
rebooted while table access is in progress. Often this does not cause table corruption
however it often causes maintained indexes to become out of date. You can also use this
component with tables that have non-maintained indexes. Use TIdxUtl with the TTUtility
component for a complete table maintenance solution.
The TIdxUtl component does not use the TUtility.DLL. All calls access only are made directly
the Borland Database Engine only.
Since TIdxUtl does not use the TUtility.DLL you could develop an application without the
table verify and repair functionality but with index checking and regenerating and not
worry about including TUtility.DLL    as a distribution file.

See Also TTUtility Component

Properties
    Run-time only

    Key properties
        Password

        RegenAll
Table

        TableName

Methods
(New topic text goes here.)

        CheckIndexes
        RegenIndex

Events
    Run-time only
    Key properties
        onInfoIdxCheck

        onInfoIdxRegen

Password Property
Applies To - TIdxUtl
Declaration
property Password : String;

Description
If the table has a master password it must be specified in this property otherwise
CheckIndexes and RegenIndex will not run.

RegenAll Property
Applies To - TIdxUtl
Declaration
property RegenAll : Boolean

Description
Set this property to TRUE if you want RegenIndex to regenerate all indexes, including the
indexes that are up to date.

Table Property
Applies To - TIdxUtl
Declaration
property Table : TTable;

Description
This property was added as an optional way of specifying the TableName. You can drop a
TTable component into your form and then use this property to select that TTable
component. Assigning this component automatically assigns a value to the TableName
property. This may be easier than assigning the TableName property directly if the path
name is very long.
Note that this property is completely optional and is meant only as a way of assisting in the
assigning    the TableName property. Also note that using this method to assign Tablename
uses slightly more resources than assigning TableName directly,

TableName Property
Applies To - TIdxUtl
Declaration
property TableName : TFileName;

Description
Assign this property the name of the table to be checked and/or regenerated. This should
be a completely qualified file name, including the path.

CheckIndexes Method
Example
Applies To - TIdxUtl
Declaration
function CheckIndexes : Boolean;

Description
Execute CheckIndexes from your application to perform the check of the table identified in
the TableName property. CheckIndexes examines the information stored in the tables
header to determine if the index is out of date. Define an onInfoIdxCheck event to receive
status information as the CheckIndexes process runs.
If CheckIndexes finds that any of the Table's indexes are out of date then it returns FALSE. If
all indexes are up to date then TRUE is returned.
If the table is password protected then the Password property must be assigned, otherwise
you will receive a run time error.

RegenIndex Method
Example
Applies To - TIdxUtl
Declaration
procedure RegenIndex

Description
Execute RegenIndex from your application to regenerate out of date indexes.
If the RegenAll property is set to FALSE then only the indexes that are out of date are
regenerated. If RegenAll is TRUE than all indexes are regenerated. You can also control
which indexes are regenerated by defining the onInfoIdxRegen event.
Note : The Borland Database Engine User's Guide states, "The effect of regenerating a
maintained index is that it becomes more efficient and compact. (Frequent updates can
fragment an Index)". pp277.
So... it a good idea to periodically regenerate all your indexes even if CheckIndexes shows
all indexes are up to date.
If the table is password protected then the Password property must be assigned, otherwise
you will receive a run time error.

onInfoIdxCheck Event
Example
Applies To - TIdxUtl
Declaration
property onInfoIdxCheck : TInfoIdxCheckEvent

Description
The onInfoIdxCheck    event reports information about the CheckIndexes process as it runs.
The    TInfoIdxCheckEvent event is defined as:
TInfoIdxCheckEvent = procedure(

Sender: TObject;
IndexName : String;
IsUptoDate : Boolean) of object;

Where IndexName reports the name of the index being checked and IsUptoDate reports
TRUE if the index is up to date and FALSE if the index is out of date.

onInfoIdxRegen Event
Example
Applies To - TIdxUtl
Declaration
property onInfoIdxRegen : TInfoIdxRegenEvent

Description
The onInfoIdxRegen event reports information about the RegenIndex process as it runs. You
can also use the onInfoIdxRegen event to selectively regenerate indexes in the selected
table. The TInfoIdxRegenEvent is defined as:
TInfoIdxRegenEvent = procedure(

Sender: TObject;
IndexName : String;
IsUptoDate : Boolean;
var Skip : Boolean) of object;

Where IndexName is the name of the index to be regenerated. IsUptoDate reports TRUE if
the index is up to date and FALSE if the index is out of date.
Use Skip to selectively regenerate indexes. If you set Skip to FALSE then the index will be
regenerated even if it is already up to date. Set Skip to TRUE if you do not want the index
regenerated. Skip has default values that will apply if you do not set its value. If the
IsUptoDate parameter is TRUE then the default value for Skip is TRUE. If IsUptoDate is
FALSE then the default value for Skip is FALSE.

Example
procedure TFormIndxProjMain.ButtonCheckIndexesClick(Sender: TObject);
begin
 if not IdxUtl1.CheckIndexes then
 MessageDlg('Index(es) are out of date and should be regenerated.',
 mtWarning, [mbOk], 0);
end;

Example
procedure TFormIndxProjMain.ButtonRegenIndexesClick(Sender: TObject);
begin
 IdxUtl1.RegenIndex;
end;

Example
procedure TFormIndxProjMain.IdxUtl1InfoIdxCheck(Sender: TObject;
 IndexName: String; IsUptoDate: Boolean);
begin
 if IsUptoDate then
 SendToLog('Index ' + IndexName + ' is up to date.')
 else
 SendToLog('INDEX ' + Uppercase(IndexName) + ' IS OUT OF DATE.');
end;

Example
procedure TFormIndxProjMain.IdxUtl1InfoIdxRegen(Sender: TObject;
 IndexName: String; IsUptoDate: Boolean; var Skip: Boolean);
begin
 if IsUptoDate then
 begin
 if MessageDlg(IndexName + ' is not out of date do you want to regenerate
it anyway?',
 mtInformation, [mbYes,mbNo], 0) = mrYes then
 begin
 Skip := False;
 SendToLog(IndexName + ' is being regenerated.');
 end
 else
 begin
 Skip := True; {this line is not necessary cause Skip is true by
default}
 SendToLog(IndexName + ' not out of date and not being regenerated.');
 end;
 end
 else
 begin
 Skip := False; {this line is not necessary cause Skip is false by
default}
 SendToLog(IndexName + ' is being regenerated.');
 end;
end;

TRepairDialog Component
Properties Methods Support Etc.
The TRepairDialog component gives you a fast and easy way to implement to implement
Paradox table verify and repair in your application.
The component wrapper is found in the TRepDlg unit and the form itself is found in the
TRepForm unit and dfm files.
Great care has been taken to make the Repair Dialog as flexible as possible. Single or
multiple table repair is completely supported along with the ability to deliver either a
simple "one click" solution or a power user "do it all" solution.
Note the the source for the TRepForm has been included in the Batch demo directory
(incase you are interested).

See Also Using TTableRepair Component

Properties
    Run-time only
    Key properties
        SourceDBName Property

        BorrowDBName Property
        DlgOptions Property
        CallBackActive Property
        TableList Property
        BorrowRebuildOnly Property

Methods
   

Execute Method

Using TRepairDialog Component
Use the Execute method to display the Dialog box.

The rest of the properties are completely optional and exist so you can customize the look
and feel of the dialog box. Specifically you may choose to limit the user ability to do
anything but push the verify and repair buttons or you can leave everything enabled and
visible to provide a full featured batch verify and repair tool.

Use the DlgOptions Property    to show or hide, disable or enable the various parts of the
dialog box.

The SourceDBName Property    and BorrowDBName Property let you specify before hand the
databases used. Specifying these before hand and then hiding those elements in the dialog
box makes the dialog more specific to your application.

Use the TableList Property to pre-select the table to be checked. Here again you can use the
DlgOptions property to then hide parts of the dialog limiting the end users choices.

The CallBackActive Property and BorrowRebuildOnly Property    are also useful in customizing
the dialog to fit your applications specific needs.

See Also TRepairDialog Component

Execute Method
Typically you will run this method from an onClick method in either a menu or a button. It
displays the modal Table repair dialog box.

See Also TRepairDialog Component

SourceDBName Property
The SourceDBName property lets you pre-specify the database that contains the tables to be
verified and or repaired. This information can also be entered at run time by filling in the
combobox labled "Source DB".

See Also TRepairDialog Component

BorrowDBName Property
BorrowDBName property lets you pre-specify where to borrow the table structures from in
case a rebuild is necessary. This information can also be entered at run time by filling in the
combobox labled "Borrow Structure DB".

See Also TRepairDialog Component

DlgOptions Property
The DlgOptions property is the key to making the dialog box as simple or as powerful as
your users require.    Use this
property to show, hide, enable or disable the various parts of the dialog.

The various options are defined in the TRDOptions data type;

 TRDOption = (rdDBCombosEnabled,
 rdDBCombosVisible,
 rdCheckBoxEnabled,
 rdCheckBoxVisible,
 rdSourceListEnabled,
 rdSourceListVisible,
 rdSelectBtnsVisible,
 rdExceptListVisible,
 rdVerifyOnlyBtnVisible,
 rdViewErrosBtnVisible,
 rdVerRebBtnVisible,
 rdRebuildOnlyVisible,
 rdSaveBatchVisible,
 rdFileInfoVIsible,
 rdGuagesVisible,
 rdLogVisible);

where each member of the set determines the look and feel as follows;

rdDBCombosEnabled Eanble/Disable the comboboxs labled "Source DB" and "Borrow Structure DB".
rdDBCombosVisible Show/Hide the comboboxs labled "Source DB" and "Borrow Structure DB".
rdCheckBoxEnabled Enable/Disable the "Only Rebuild ... " Checkbox.
rdCheckBoxVisible Show/Hide the "Only Rebuild ... " Checkbox.
rdSourceListEnabled Enable/Disable the listbox labled "Select Tables to verify and rebuild ...".
rdSourceListVisible Show/Hide the listbox labled "Select Tables to verify and rebuild ...".
rdSelectBtnsVisible Show/Hide the buttons that move the tables between the list boxes.
rdExceptListVisible Show/Hide the list labled "Tables missing from the Borrow Structure DB".
rdVerifyOnlyBtnVisible Show/Hide the button labled "Verify Only".
rdViewErrosBtnVisible Show/Hide the button labled "View Error Table".
rdVerRebBtnVisible Show/Hide the button labled "Verify & Rebuild".
rdRebuildOnlyVisible Show/Hide the force rebuild button.
rdSaveBatchVisible Show/Hide the button labled "Rebuild".
rdFileInfoVIsible Show/Hide the file status information (Number or Records, Passwords, etc.).
rdGuagesVisible Show/Hide the status guages.
rdLogVisible Show/Hide the event log window.
See Also TRepairDialog Component

CallBackActive Property
Some times you just don't want to see all those status guages spinning around. You can turn
them off by setting the CallBackActive property to false.    Setting CallBackActive to false also
improves performance.

See Also TRepairDialog Component

TableList Property
The dialog box's TableList property lets you pre-specify which table in the source database
should be checked. The tables listed here will be preselected in the table list when the
dialog box is first activated.
See Also TRepairDialog Component

BorrowRebuildOnly Property
The BorrowRebuildOnly property pre-specifies if a table can be rebuilt without another table
to
borrow the structure from. Its always a good idea to always borrow the structure of a known
good table. This property
can be changed by the user at runtime by checking or unchecking the checkbox labled "Only
Rebuild if a matching
table is in the Borrow Structure DB".

See Also TRepairDialog Component

